Machine Learning in Exploration Target Generation

Ross Corben (GEOWiZ Consulting) Gavin Daneel (Gavin Daneel & Associates)

Paradigm

Targets identified, validated & prioritised

input output

Degrussa brown-field prospectivity?

Artificial Neural Networks (ANNs)

- ANNs are one set of algorithms used in machine learning
- They are inspired by the biological processes of the brain
- ANNs are good at:
 - Analysing large amounts of complex data
 - Identifying relationships between data layers
 - Recognising patterns and associations
 - Making predictions automatically
- Powerful analysis tool that can explore the complete set of data layers
- Decision support for the Geologist
- Orders of magnitude more time efficient than conventional methods

Artificial Neural Networks

Five types of neural network analysis can be used for target generation in mineral exploration:

- Anomaly Detection
- Cluster Identification
- Correlation Analysis
- Relationship Analysis
- Fuzzy Searching

Data Input & Output

Structural – 1st order faults,

Processed magnetics - 1vd

Geology layers

Analysis can be at any scale.

Can handle 2D or 3D data.

Prospect scale:

soil samples - 50 elements

ANN Anomaly Analysis

Features:

- Identifies regions that are anomalous
- Evaluates how anomalous these regions are
- Relates anomalies back to the data with the ability to interrogate each anomaly
- Fully automatic operation
- Control by:
 - Selection of survey layers
 - Region of interest
 - Training duration

Anomaly & Cluster Identification

An unsupervised neural analysis search results in a map of anomalies highlighting instances where the data do not fit the range of values of common patterns (or clusters).

After identifying the anomalies, the unsupervised search defines areas of commonly recurring patterns and then groups these into clusters.

Essentially the group of anomalous points (defined by the anomaly map) are those points that fall outside the set of common patterns (or clusters) recognised by the unsupervised ANN.

Anomaly analysis

The Feature Vector Plot (FVP) shows the values at particular anomalies.

The colour of the histogram indicates the variability of that layer with its neighbours.

Moving the cursor over the anomaly map dynamically changes the FVP values.

The Cluster Label Matrix represents the association between individual clusters. Each cluster is represented by several coloured and numbered squares:

- The number of squares assigned to a cluster indicates its relative proportion of the total data coverage or area
- The proximity of two clusters indicate their similarity e.g. cluster 1 is similar to cluster 5 but dissimilar to cluster 4. A geological setting where this sort of association might occur is in a granitic terrain with minor basaltic flows. In this instance clusters 3 and 4 might represent the outcrops of the dominant granitic lithologies whereas clusters 1 and 5 might well represent the basaltic flows and their weathering products.

Neural Fuzzy Search

Specify search items

- search for a selected pattern eg. anomaly
- search from a particular location eg. a known mineral deposit
- search for a "created" pattern look for a particular deposit type signature
- searches for a correlation signature

Control by:

- choose data layers to include
- set the data threshold for each layer
- control the weighting of each layer

Neural Fuzzy Search

Neural Fuzzy Search - link from known mineral deposit to look for areas with a similar geochemical signature

Neural Fuzzy Search using the North Parkes Endeavour 27 deposit as the search location

Neural Fuzzy Search

Fuzzy Search : Porphyry (FOCUS)

Customised (Porphyry) Fuzzy Search

- elevated Ag, Au, Cu, K, Mo
- low Cr, Ni

Neural Correlation Analysis

- Looks at the relationships between the data layers
- Relational Knowledge
- Correlation signatures can be determined
- Search for areas with similar correlation signature ie. search for similarities in relationships for population identification
- Correlation analysis provides a means of searching for signatures of the relationship between layers, independent of the amplitude values of the layers
- The subtle relationship between elements can be of more importance than the observed rank outlier values that are easily observed

Correlation of each element with respect to Cu within a specified region of interest

Correlation link to fuzzy search

This searches for signatures of the relationships between layers, independent of the amplitude values of the layers and so may detect anomalies in areas where the raw values are close to the detection limit but the associations are the same as the higher values in the region of interest.

Workflow - Neural Network Analysis

Rio Tinto – Southern Peru

- Peru Mines Department (Ingemet) Southern Peru Data Package
- Geochemistry 30 layers of stream sediment geochemical samples
- Mineral Occurrences Database
- Surface geology
- Anomaly detection, cluster analysis, fuzzy search and correlation analysis tools used

Stream Sediment Sample Points

all elements used in search shown with known mineral occurrences

🖺 у 🏥 zn 🏥 zr

Porphyry search: > 50% Ag-Au-Cu-K-Mo-Pb-Zn

< 50% Cr-Fe-Ni

Known major porphyry mines and deposits

Degrussa VMS Deposit - WA

Gravity (1)

DEM (1)

DGTL Study- Cluster Label Matrix

	14	14	14	14	14	14	14	14	14	13	13	13	13	13	25	25	25	34	34	34	34	34	34	26	26
	14	14	14	14	14	14	14	14	14	13	13	13	13	13	25	25	25	34	34	34	34	34	34	26	26
	13	13	13	13	13	14	14	14	13	13	13	13	13	13	13	17	17	28	28	28	28	28	28	28	28
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	17	17	28	28	28	28	28	28	28	28
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	17	17	28	28	28	28	28	30	30	30
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	28	28	28	28	28	28	28	30	30
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	28	28	28	35	35	35	35	35	35
	10	10	13	13	13	13	13	13	13	13	13	13	13	13	13	19	19	19	19	19	19	19	19	35	35
	10	10	23	23	23	23	23	23	13	13	13	13	23	23	23	23	23	23	23	19	19	19	19	35	35
	9	9	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	19	19	19	19	38	38
	9	9	23	23	23	23	23	23	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
	8	8	23	23	23	23	23	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
	8	8	15	15	15	15	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	20	20
	8	8	15	15	15	38	38	38	38	38	38	38	38	38	38	38	38	38	38	33	33	20	20	20	20
	7	7	38	38	38	38	38	38	38	38	38	38	38	38	38	33	33	33	33	33	33	33	33	37	37
	7	7	38	38	38	38	38	38	38	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37
ļ	7	7	38	38	38	38	38	38	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37
	6	6	38	38	4	4	38	38	37	37	37	37	37	37	37	37	37	37	37	36	36	36	36	36	36
	6	6	38	4	4	4	38	22	22	22	22	22	22	22	22	22	22	37	37	36	36	36	36	32	32
	5	5	4	4	4	4	22	22	22	22	22	22	22	22	22	22	22	22	22	32	32	32	32	32	32
	2	5	4	4	4	4	22	22	22	22	22	22	22	22	22	22	22	22	29	29	29	29	29	32	32
	3	5	4	4	4	2	2	2	2	18	18	18	18	18	22	22	22	22	10	10	10	10	16	16	16
	3	3	4	4	4	2	2	2	2	18	18	18	18	18	22	22	22		11	31	31	31	31	21	21
	5	5	12	12	12	12	22	22	22	22	22	22	22	22	22	22	22	11	11	31	31	24	24	27	27
	I		12	12	12	22	22	22	22	22	22	22	22	22	22	22	22	11	11	31	51	31	24	27	27

DGTL study Fuzzy Search of anomaly at 7173400mE/7173400mN 95 layers

Feature Vector at 734700 7173400

boh_Aol1_agppm_PEGRD boh_Aol1_asppm_PEGRD boh_Aol1_auppb_PEGRD boh_Aol1_Bippm_PEGRD boh_Aol1_Chrom PEGRD

Aol1_Inppm_PE.GRD

h_Aol1_Pbppm_PEGRD h_Aol1_PCR2_Felsi_PEGF h_Aol1_PCR2_MS4_PEGF h_Aol1_PCR2_PEGRD h_Aol1_PCR2_UM_PEGRD h_Aol1_PCR2_UM_PEGRD h_Aol1_Rbppm_PEGRD h_Aol1_Rbppm_PEGRD

STARRA Hymap Analysis

Input layers:

Geophysics (2 layers)

- Gravity
- Magnetics
- Terrain (1 layer)
- DTM

Spectral (12 layers)

 Variety of modelled mineral abundance maps

Anomaly Map Unsupervised ANN

Highlighted colours signify cells having rare input layer associations

Mineralising systems:

- generally have a much smaller footprint relative to geological & geomorphological regions
- Unusual physical metrics (geophysical, geochemical, spatial etc.) relative to region
- Unlikely to be defined by a cluster or class of more frequently occurring input layer associations

Starra 222 similarity map

I kühte cenent gel Senix inn mei MarCELeri 🔒 H ferric ontile content.gel ip H Perns ani MajOElgei 🚯 idde 3 Feren innel Way H bain content pri Eriting El Nacht marpreitinnaget 🚺 10 the B nix analisis at 🚺 Bolkan El emanara Millarat 🛛 🗍 🖗 M. Caschy, Gall, 27:07, g

Metal Ridge similarity map

1 west 14(1) 973

What IF Serie into and Vertified

Nig H. Ferrou and MacKingsi

Map H inih contra pa

Miler El SAVE con

Biller F nice contribution

Holder H famic stalle costs

SWAN similarity map

Neural Analysis Project Using ASTER Data

AREA OF INTEREST

UPPER LEFT X=302500.000 UPPER LEFT Y=7230000.000 LOWER RIGHT X=315000.000 LOWER RIGHT Y=7207500.000 WEST LONGITUDE=151° 02' 21.4472" E NORTH LATITUDE=25° 01' 57.8340" S EAST LONGITUDE=151° 09' 58.9343" E SOUTH LATITUDE=25° 14' 14.6504" S UL CORNER LONGITUDE=151° 02' 33.1153" E UL CORNER LATITUDE=25° 01' 57.8340" S **UR CORNER LONGITUDE=151° 09' 58.9343" E** UR CORNER LATITUDE=25° 02' 03.5222" S LR CORNER LONGITUDE=151° 09' 48.0034" E LR CORNER LATITUDE=25° 14' 14.6504" S LL CORNER LONGITUDE=151° 02' 21.4472" E LL CORNER LATITUDE=25° 14' 08.9097" S PROJ DESC=UTM Zone -56 / WGS84 / meters **PROJ DATUM=WGS84 PROJ_UNITS=meters** EPSG CODE=EPSG:32756 COVERED AREA=281.25 sq km

VNIR_Band_1_DS VNIR_Band_2_DS SWIR_Band_4_DS SWIR_Band_5_DS VNIR_Band_3_DS SWIR_Band_6_DS SWIR_Band_8_DS SWIR_Band_7_DS SWIR_Band_9_DS DEM

ASTER& DEM Layers Used In Analysis

DEM – Terrain Ruggedness Index (TRI)

Anomaly Map

- Magenta colours signify points with unique input layer associations too rare to comprise a cluster
- Anomalous points may be unique for different reasons
- The only drill hole coinciding with an anomaly is CK003

HARRING .	Cluster 2	NT VNIR SWIR I VNIR		1_15×5 [Cl	uster Labe	EM	ocus) [plu	sTR	LI_1	5x5	[C	lust	er I	Labe	el M	[atrix	$\begin{bmatrix} X \\ X \end{bmatrix}$ Cluster 13	
St THE MAN		2	4	4	7	7	10	17	17	22	22	22	13	13	13	13		S.C.
A SA AND		2	2	4	7	7	10	17	17	22	22	22	13	13	13	13		
		2	2	6	10	10	10	10	20	20	20	19	13	13	13	13		
NO 10 TOTAL		2	2	6	6	10	10	10	20	20	20	19	13	13	13	13		SER. NE
		2	2	6	9	9	9	9	19	19	19	19	13	13	13	13		保持济
SAL MUS		2	2	6	9	9	14	14	14	14	19	19	13	13	13	13		
		2	2	6	6	8	8	8	14	14	14	19	13	13	13	13		
CALL STALL		2	2	6	6	8	8	14	14	14	14	14	13	13	13	13		
TANKA SEA	Cluster 3	2	2	6	6	8	18	18	18	18	18	18	13	13	13	13	Cluster 23	
		1	1	6	6	5	18	18	18	18	18	18	12	12	13	13		
PARA		1	1	5	5	5	12	12	12	12	12	12	12	12	12	12		A REAL PROPERTY
		1	1	5	5	5	5	16	16	16	16	16	12	12	12	12		
		3	1	5	5	5	5	16	16	16	16	16	16	12	12	12		
		3	3	5	5	5	11	15	15	21	21	21	21	23	23	23		
		3	3	3	5	5	11	15	15	21	21	21	21	23	23	23		1.1.19
	Clus	ter La	abel	l Ma	atrix	< — r	neu	ral r	nat	rix i	ndi	cati	ng t	the	rela	itior	ıship	
		bet	wee		iusi	612	uer	me	u n)		e ul	isup	Jeiv	/ISe				March 1 - 2 / 1 - 2

Drill hole Prospectivity Map

			ala di Ma	h a m		_							
0	% 20	I% 40	xaled Va %60	iue 1% 80	% 10	0%							
VNIR_Band_1_DS.grd			341			1							
VNIR_Band_2_DS.grd		48	i.0										
VNIR_Band_3_DS.grd			.74										
SWIR Band 4 DS.grd			334										
SWIR_Band_5_DS.grd		:	.99										
SWIR_Band_6_DS.grd			-173										
SWIR_Band_7_DS.grd			4	46									
SWIR_Band_8_DS.grd			330										
SWIR Band 9 DS.grd			90.9										
AW3D30_DEM,grd			287										
W3D30 DEM_TRI.grd	1	.24											
	% 20	% 40	% 60	% 80	% 10)0%							
auer: VNIB Band 2 DS ord	1(4%)	So	aled Va	lue		_							
Actual and Scaled Values : 48	1.000, 33 ²	%				_							
Fuzzy Search	Export	Data		Close									
	5												
Nouval Europ Coarch Co	optor				_								
- Neural Fuzzy Search	Paramet	ters											
Fuzzy Search	Link fror	m FVP (i	309431	, 721099	ē								
VNIR_Band_1_DS.gr	d: 39%	We	VNIR Band 1_DS.grd: 39% Weight:5 C Lower										
			ignuo	- · · ·	wer								
	1			C Up ⊙ Eq	wer iper uiv.								
	'		1- -	C Up ⊙ Eq C No	wer per uiv. it used	•							
VNIR_Band_1			38	○ Up ○ Eq ○ No ○ No	wer iper uiv. it used								
VNIR_Band_1			349		wer iper uiv. it used								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3			38 38 38	C Up © Eq C No %	wer iper uiv. it used								
VNIR_Band_1. VNIR_Band_2. VNIR_Band_3. SWIR_Band_4 SWIR_Band_5			38 349 38 38	C Up C No C No % % % 51% %	wer iper uiv. it used								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3 SWIR_Band_4 SWIR_Band_5 SWIR_Band_6			38 349 38 38' 38' 38' 38' 39	© Up ● Eq No % 51% % %	wer iper uiv. it used								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3 SWIR_Band_4 SWIR_Band_5 SWIR_Band_6 SWIR_Band_7			38 349 38 37 37 39	© Up © Eq © No % 51% % %	wer iper it used								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3 SWIR_Band_4 SWIR_Band_5 SWIR_Band_6 SWIR_Band_7 SWIR_Band_8			38 349 38 37 37 39	C Up Eq No 51% 51% %	wer iper uiv. tused								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3 SWIR_Band_4 SWIR_Band_6 SWIR_Band_6 SWIR_Band_7 SWIR_Band_8			38 349 38 37 39	© Up © Eq © No % 51% % % \$55%	wer per uiv. t used								
VNIR_Band_1 VNIR_Band_2 VNIR_Band_3 SWIR_Band_4 SWIR_Band_5 SWIR_Band_6 SWIR_Band_7 SWIR_Band_8 SWIR_Band_8		i i i i i i i i i i i i i i i i i i i	38 349 38 37 39 39	C Up Eq No 6 7 7 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8	wer per uiv. t used								

Workflow

- . Generate feature vector plot at point of interest (CK003)
- Create a Neural Fuzzy Search profile. Form auto-populated by relevant search profile
- Initiate a fuzzy search to generate a similarity map showing points more closely sharing the same input layer association as CK003 in magenta.

CK003

ROI supervised learning NRE pattern & distribution

Neural Relationsh	nip Explorer - Eas	ting: 309430) Northing: 7210980	2
Layer Name	Value		Left click on bar to toggle 'fix' on value	
VNIR_Band_1	500			
VNIR_Band_2	5.0			
VNIR_Band_3	323.0	↓ ▶		
SWIR_Band_4	503	↓ ▶		
SWIR_Band_{	8	↓ ▶		
SWIR_Band_6	-380	↓ ▶		
SWIR_Band_	482	↓		
SWIR_Band_	404	↓		
SWIR_Band_9	112	♦		
AW3D30_DE	289.0	♦		
AW3D30_DE	1.15			T
Fuzzy Search	Reset Op	tions	Close	
				_

Densest drill location ROI correlation search NRE pattern & distribution

3D Neural Network Analysis Project

- Geochemical-geometallurgical domains can be identified using multivariate data analysis combined with machine learning pattern-recognition techniques (Keeney, 2010; Montoya et al. 2011).
- Geochemical domains can reflect mineralogy to a degree that might be difficult or impossible to produce using geological mapping, visual logging, or considering geochemical data in conventional ways (Berry et al., 2011; Cobeñas et al., 2015).
- Example project 3D block model of a strata bound Cu deposit with 8 elements modelled: Ag, As, Bi, Cu, Mo, Pb, S, Zn
- Over 150 RC and diamond drill holes defining the resource

Unsupervised Anomaly Map

Feature Vector at 1527820 725955

Scaled Value

- 🗆 🗵

Cluster profiles for 15 clusters generated. The peaks represent the relative strength of their contribution of the element to the cluster in which they are associated.

0.00%

-5

Fuzzy Search for High As, Bi and Cu

Feature Vector at 1528080 725845

_ 🗆 🗙

ag ppm

as ppm

bi_ppm

cu pet

mo ppm

pb ppm

s pct

zn ppm

X

C Lower

Equiv.

58%

Close

- 🗆 ×

42%

Upper

O Not used

Under Cover Western Australian Archean Gold Project

This project was recently completed for a company exploring for gold beneath a salt lake in Western Australia.

The company had made a significant discovery and had completed an initial drilling program with some outstanding intersections.

The cost of drilling on the lake was very high so they were looking for ways to minimize the drilling by locating targets under cover using machine learning.

Gravity layers

Magnetics layers Fuzzy search similarity map using the gold discovery under cover location as the search point

	118 30	7 0000
1 Martinel		Archean Gold Project
		Max Au (ppm)
		• 0 - 0.05 gm
		• 0.05 - 0.1 gm
		• 0.1 - 0.25 gm
		• 0.25 - 0.5 gm
		• 0.5 - 0.75 gm
		• 0.75 - 1.0 gm
		• 1.0 - 2.5 gm
		>2.3 gm
		N
		1 km
		Google Earth

	Feature Vector at 583	3105 6 <u>93</u>	39085			
			So	caled Val	ue	
F	a A 2nd Onder Res.ord	1% 20	40	% 60 	% 80	% 100
]	BA 3rd Order Res.ord			26.9		
]	BA 4th Order Res.ord	-	-33.	4		
]	BA 5th Order Res.grd			19,2		
_]	BA 6th Order Res.grd	-		-17,3	 	
	BA Res 2km.grd			4.12		
	BA Res 5km.grd				-40.8	
	RTP.grd]	230			
	RTP-1VD.grd		-1.02			
	RTP-2VD.grd			0.0039	8	
	RTP-tilt.grd		1.03			
	SCBA267GU.grd				-444	
	SCBA267GU-tilt.grd				0.308	
	C	1% 20	1% 40 So	i% 60 caled Val	% 80 ue	% 100
ļ	_ayer : BA_5th_Order_Res.g	rd (7%)				
k	Actual and Scaled Values : -	19.202, 3	7%			
	Fuzzy Search	Expor	t Data	_	Close	
-						

The correlation analysis provides a means of searching for signatures of the relationship between layers, independent of the amplitude values of the layers. The subtle relationship between layers can be of more importance than the observed rank outlier values that are easily observed.

ROI correlation search BA_Res_5km

State State

GeoWizards have utilized the exploration data supplied by Oz Minerals, as well as sourcing other data, to perform detailed Neural Network processing using unsupervised neural analysis tools to automatically identify anomalies, and supervised analysis tools using data relationships at known mineral deposits such as Olympic Dam and Prominent Hill to search for "lookalikes". The resulting anomaly and similarity maps have then been integrated with geology and drill hole data to develop a feature selection matrix that has been used to prioritise targets for further investigation.

cover thickness

REGIONAL STUDY INPUT LAYERS

North Eastern Gawler IOCG Province

Machine Learning Analysis Input layers gridded to a common 200m x 200m

REGIONAL STUDY SEARCH RESULTS

North Eastern Gawler IOCG Province

Unsupervised ANN

Detected relatively unique input-layer association (anomalies) over all major IOCG deposits and discoveries

Note:

warmer colours signify relative uniqueness and each feature is not unique for the same input-layer association

Regional study Search Results

North Eastern Gawler IOCG Province

Unsupervised ANN

Numerous features sharing similar inputlayer associations for Olympic Dam (Left) and Prominent Hill (Right) as highlighted by the auto-generated fuzzy search creator parameters for each deposit

Note:

- warmer colours signify relative similarity and each feature highlighted shares similar inputlayer association
- 2. "character" of Olympic Dam is not the same as for Prominent Hill

Thank you

If you would like more info, please contact us at:

www.geowiz.com.au www.gdaneel.consulting